Bregman Gradient Methods for Relatively-Smooth Optimization

Transfagarasan road, Romania

> Radu-Alexandru Dragomir, Université Toulouse 1 Capitole, D.I. Ecole normale supérieure.

Directed by Jérôme Bolte and Alexandre d'Aspremont.
Joint work with Adrien Taylor, Dmitrii Ostrovskii, Hadrien Hendrikx, Mathieu Even.
September 14, 2021

Large-scale optimization

We want to solve

$$
\begin{equation*}
\min _{x \in \mathcal{C}} f(x) \tag{P}
\end{equation*}
$$

where \mathcal{C} is a convex set of $\mathbb{R}^{d}, d \gg 1$.

Signal processing

Recovery of unknown signal from partial and noisy observations

Source: LASIP toolbox

Machine learning
Learning a prediction function from training data

Source: ipullrank.com

Our objective

$$
\begin{equation*}
\min _{x \in \mathcal{C}} f(x) \tag{P}
\end{equation*}
$$

- Iterative methods: solve a series of subproblems to compute a sequence

$$
x_{0}, x_{1}, x_{2}, \ldots x_{k} \ldots
$$

which approaches the solution x_{*}.

- First-order methods: for large-scale problems, the algorithm has only cheap access to first-order oracle

$$
x \mapsto(f(x), \nabla f(x))
$$

- In practice, f is not a black box: use problem structure to devise efficient algorithms, with theoretical guarantees.

■ Our approach: Bregman methods and relatively-smooth optimization.

$$
\nabla^{2} f \preceq L \nabla^{2} h \quad \text { (Bauschke, Bolte, Teboulle, 2017) }
$$

Outline

- Bregman gradient methods and relative smoothness
- Application to low-rank minimization
- Theoretical complexity: lower bound and computer-aided analyses
- Stochastic variants

Gradient descent

$$
\begin{equation*}
x_{k+1}=\Pi_{\mathcal{C}}\left[x_{k}-\lambda \nabla f\left(x_{k}\right)\right] \tag{GD}
\end{equation*}
$$

λ is the step size, $\Pi_{\mathcal{C}}$ denotes projection on \mathcal{C}.

Smoothness

$$
\begin{equation*}
x_{k+1}=\underset{u \in \mathcal{C}}{\operatorname{argmin}} f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), u-x_{k}\right\rangle+\frac{1}{2 \lambda}\left\|u-x_{k}\right\|^{2} \tag{GD}
\end{equation*}
$$

GD iteratively minimizes a quadratic approximation of f : when is it accurate?
Smoothness assumption: if f has a L-Lipschitz continuous gradient, then for every $\lambda \in(0,1 / L]$,

$$
f(u) \leq f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), u-x_{k}\right\rangle+\frac{1}{2 \lambda}\left\|u-x_{k}\right\|^{2} .
$$

The quadratic model is an upper approximation of f.

Bregman gradient descent

Are we limited to a quadratic model? A more general method is

$$
\begin{equation*}
x_{k+1}=\underset{u \in \mathcal{C}}{\operatorname{argmin}} f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), u-x_{k}\right\rangle+\frac{1}{\lambda} D_{h}\left(u, x_{k}\right) \tag{BGD}
\end{equation*}
$$

where

$$
D_{h}(x, y)=h(x)-h(y)-\langle\nabla h(y), x-y\rangle \geq 0
$$

is the Bregman divergence induced by some strictly convex kernel function h adapted to \mathcal{C}.

Examples:

■ Euclidean: $h(x)=\frac{1}{2}\|x\|^{2}:$ then $D_{h}(x, y)=\frac{1}{2}\|x-y\|^{2}$,

- Entropy: $h(x)=\sum_{i=1}^{d} x^{i} \log \left(x^{i}\right)-x^{i}$, then $D_{h}=D_{\mathrm{KL}}$ and (BGD) writes

$$
x_{k+1}=x_{k} \cdot \exp \left[-\lambda \nabla f\left(x_{k}\right)\right]
$$

Also called Mirror descent / NoLips...

Effect of Bregman divergence

Comparing the Bregman update with $\nabla f\left(x_{k}\right)=(4,1)$ from different starting points and kernel functions:

(a) Euclidean

(b) Entropy

Effect of Bregman divergence

Relative smoothness

(Bauschke, Bolte, Teboulle, 2017)

f is L-smooth relative to the kernel function h if

$$
f(u) \leq f(x)+\langle\nabla f(x), u-x\rangle+L D_{h}(u, x)
$$

For C^{2} functions, equivalent to

$$
\nabla^{2} f(x) \preceq L \nabla^{2} h(x) .
$$

Similarly, relative strong convexity is defined as (Lu, Freund, Nesterov, 2018):

$$
\mu \nabla^{2} h(x) \preceq \nabla^{2} f(x) .
$$

Example of relatively-smooth function

Linear inverse problems with Poisson noise (Bauschke et al., 2017): let $b \in \mathbb{R}^{m}, A \in \mathbb{R}_{+}^{m \times d}$,

$$
\min _{x \in \mathbb{R}_{+}^{n}} D_{K L}(b, A x)=\sum_{j=1}^{m} b_{j} \log \left(\frac{b_{j}}{A_{j} x}\right)-A_{j} x+b_{j}
$$

Applications in medical imaging, astronomy...

Figure 1: Example for $d=2$

Standard smoothness does not hold as the Hessian is singular when $A_{j} x \rightarrow 0$, but relative smoothness holds with

$$
h(x)=\sum_{i=1}^{d}-\log \left(x^{i}\right)
$$

Convergence guarantees

If f is L-smooth relative to h, then BGD with step size $\lambda=1 / L$ satisfies:

- If f is convex (Bauschke, Bolte, Teboulle, 2017):

$$
f\left(x_{N}\right)-f\left(x_{*}\right) \leq \frac{L D_{h}\left(x_{*}, x_{0}\right)}{N}
$$

- If f is μ-strongly convex relative to h (Lu, Freund, Nesterov 2018):

$$
f\left(x_{N}\right)-f\left(x_{*}\right) \leq L\left(1-\frac{\mu}{L}\right)^{N} D_{h}\left(x_{*}, x_{0}\right)
$$

- If f is non-convex (Bolte et al., 2018):
- the sequence $\left\{f\left(x_{k}\right)\right\}$ is nonincreasing,
- if $\mathcal{C}=\mathbb{R}^{d}$ and f satisfies the Kurdyka-Lojasiewicz property: the sequence $\left\{x_{k}\right\}$ converges to a critical point.

How to choose the kernel in practice?

$$
\begin{equation*}
x_{k+1}=\underset{u \in \mathcal{C}}{\operatorname{argmin}} f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), u-x_{k}\right\rangle+\frac{1}{\lambda} D_{h}\left(u, x_{k}\right) \tag{BGD}
\end{equation*}
$$

We seek h such that

- the inner objective in (BGD) is a good approximation of f, the inequality

$$
\nabla^{2} f(x) \preceq L \nabla^{2} h(x)
$$

holds as tightly as possible;

- the inner minimization problem can be solved easily.

There is often a tradeoff between these two goals!

Outline

- Bregman gradient methods and relative smoothness
- Application to low-rank minimization
- Theoretical complexity: lower bound and computer-aided analyses
- Stochastic variants

Non-convex low-rank minimization

$$
\min _{X \in \mathbb{R}^{n \times r}} \underbrace{\mathcal{L}\left(X X^{T}\right)}_{\text {differentiable error function }}+\underbrace{g(X)}_{\text {nonsmooth penalty }}
$$

$r \in \mathbb{N}$ is the target rank, \mathcal{L} is a L_{1}-smooth error function (typically a quadratic),

- Example: symmetric nonnegative matrix factorization

$$
\min _{X \in \mathbb{R}^{n \times r}}\left\|X X^{T}-M\right\|^{2} \quad \text { subject to } X \geq 0 .
$$

- $f(X)=\mathcal{L}\left(X X^{T}\right)$ is not globally smooth (typically quartic) \rightarrow standard Euclidean methods might not be adapted.

Objective

Design kernels h adapted to f by leveraging the quartic structure, and apply Bregman proximal gradient method

$$
\begin{equation*}
X_{k+1}=\underset{U \in \mathcal{C}}{\operatorname{argmin}} f\left(X_{k}\right)+\left\langle\nabla f\left(X_{k}\right), U-X_{k}\right\rangle+\frac{1}{\lambda} D_{h}\left(U, X_{k}\right)+g(U) \tag{BPG}
\end{equation*}
$$

Two different kernels

The "simple" norm kernel

$$
h_{n}(X)=\frac{\alpha}{4}\|X\|^{4}+\frac{\sigma}{2}\|X\|^{2} .
$$

Proposition (D., d'Aspremont, Bolte, 2021): f is 1-smooth relative to h_{n} for α, σ high enough.

- Bregman update: easy (computing $\nabla F\left(X_{k}\right)+$ simple scalar equation).

The "more refined" Gram kernel

$$
h_{G}(X)=\frac{\alpha}{4}\|X\|^{4}+\frac{\beta}{4}\left\|X^{T} X\right\|^{2}+\frac{\sigma}{2}\|X\|^{2} .
$$

Proposition (D., d'Aspremont, Bolte, 2021): f is 1 -smooth relative to h_{G} for α, β, σ high enough.

- Better approximation of f than h_{n} for well-conditionned \mathcal{L};

■ Bregman update: harder. Computable only for unpenalized problems $(g=0)$ and requires solving a subproblem of dimension r (the target rank).

Experiments: Distance Matrix Completion

Recover the position of n points $X_{1}^{*}, \ldots, X_{n}^{*}$ in \mathbb{R}^{r} from an incomplete set of pairwise distances

$$
\begin{gather*}
\left\{d_{i j}=\left\|X_{i}^{*}-X_{j}^{*}\right\|^{2} \mid(i, j) \in \Omega\right\} \\
\min _{X \in \mathbb{R}^{n \times r}} f(X)=\sum_{(i, j) \in \Omega}\left(\left\|X_{i}-X_{j}\right\|^{2}-d_{i j}\right)^{2} \tag{EDMC}
\end{gather*}
$$

Unconstrained problem: we compare the norm kernel h_{n} with the Gram kernel h_{G}.

Experiments on synthetic Helix dataset with 10% known distances, dimension $r=3$.

Experiments: Distance Matrix Completion

Figure 2: Experiments on Helix dataset

Outline

- Bregman gradient methods and relative smoothness
- Application to low-rank minimization
- Theoretical complexity: lower bound and computer-aided analyses
- Stochastic variants

The question of acceleration

We recall the convergence rate of BGD for relatively smooth convex functions

$$
f\left(x_{N}\right)-f\left(x_{*}\right) \leq \frac{L D_{h}\left(x_{*}, x_{0}\right)}{N}
$$

Is there an algorithm that does better ?

Algorithm	Supplementary assumptions	Convergence rate		
Accelerated gradient descent (Nesterov, 1983)	$h(x)=\frac{1}{2}\\|x\\|^{2}$	$O\left(1 / N^{2}\right)$		
Accelerated BGD (Auslender and Teboulle, 2006)	h is μ-strongly convex and f is L-smooth	$O\left(1 / N^{2}\right)$		
Accerated BGD (Hendrikx et al., 2020; Hanzely et al., 2021)	h satisfies triangle scaling inequality	Improved asymptotically		

These assumptions are quite restrictive... What about the general case?

A lower bound for relatively-smooth convex minimization

In the general case, the $\mathcal{O}(1 / N)$ rate of BGD is optimal.

Theorem (D., Taylor, d'Aspremont, Bolte, 2021)

For every $N \geq 1$, there exists functions $f_{N}, h_{N}: \mathbb{R}^{2 N+1} \rightarrow \mathbb{R}$ and $x_{0} \in \mathbb{R}^{2 N+1}$ such that

- f_{N} is L-smooth relative to h_{N},
- for any Bregman first-order method \mathcal{A} initialized at x_{0}, after N iterations we have

$$
f_{N}\left(x_{N}\right)-f_{N}\left(x_{*}\right) \geq \frac{L D_{h_{N}}\left(x_{*}, x_{0}\right)}{4 N+1}
$$

■ Bregman first-order method: uses $\nabla f, \nabla h, \nabla h^{*}$ and linear operations.

- Additional assumptions are needed to achieve acceleration.
- Worst-case functions f_{N}, h_{N} are "nearly" nondifferentiable.

Computer-aided analyses

Performance estimation: computing the worst-case behavior of a first-order through optimization (Drori and Teboulle, 2014; Taylor et al., 2017).

Recall the convergence rate of BGD for f convex and L-smooth relative to h :

$$
f\left(x_{N}\right)-f\left(x_{*}\right) \leq \frac{L D_{h}\left(x_{*}, x_{0}\right)}{N}
$$

Is this the best possible bound for generic f and h ? What are the corresponding worst-case functions ?

Performance Estimation Problem

$$
\begin{aligned}
& \text { maximize } \\
& \text { subject to } h \text { is a kernel (differentiable and strictly convex), } \\
& f \text { is convex and } L \text {-smooth relative to } h, \\
& \\
& x_{1}, \ldots, x_{N} \text { are generated from } x_{0} \text { by BGD with step size } 1 / L,
\end{aligned}
$$

in the variables $x_{0}, \ldots, x_{N}, x_{*}, f, h$.

How to solve the PEP?

- Reduction to a finite-dimensional problem by replacing f, h with their discrete representations at $x_{0}, \ldots x_{N}$ (Drori and Teboulle, 2014):

$$
\begin{aligned}
\left(f_{i}, g_{i}\right) & =\left(f\left(x_{i}\right), \nabla f\left(x_{i}\right)\right) \\
\left(h_{i}, s_{i}\right) & =\left(h\left(x_{i}\right), \nabla h\left(x_{i}\right)\right)
\end{aligned}
$$

- Equivalence with original problem is guaranteed by interpolation conditions (Taylor et al., 2017), which we extend to the relatively smooth setting.

$$
\begin{aligned}
x_{i} \neq x_{j} \Longrightarrow h_{i}-h_{j}-\left\langle s_{j}, x_{i}-x_{j}\right\rangle>0, & (\text { strict convexity of } \mathrm{h}) \\
s_{i} \neq s_{j} \Longrightarrow x_{i} \neq x_{j}, & (\text { differentiability of } \mathrm{h})
\end{aligned}
$$

- The PEP is then equivalent to a finite-dimensional problem in $\left\{\left(x_{i}, f_{i}, g_{i}, h_{i}, s_{i}\right)\right\}$, with quadratic constraints: can be solved via semidefinite programming.

Results and insights

- The numerical value of the PEP is exactly L / N : the bound

$$
f\left(x_{N}\right)-f\left(x_{*}\right) \leq \frac{L D_{h}\left(x_{*}, x_{0}\right)}{N}
$$

is tight in the worst case for BGD.

- Limiting nonsmooth behavior: the feasible set is not closed; the supremum is reached as (f, h) approach some nonsmooth limiting functions (\bar{f}, \bar{h}).

- With some modifications, discovered worst-case functions which are hard for any Bregman method \rightarrow general lower bound

The case of entropy

Joint work with D. Ostrovskii
The case of generic h is too hard: let us now focus on a particular kernel, the entropy

$$
h_{e}(x)=\sum_{i=1}^{d} x^{i} \log x^{i}-x^{i}
$$

Performance Estimation Problem - entropic case

maximize $\quad\left(f\left(x_{N}\right)-f\left(x_{*}\right)\right) / D_{h_{e}}\left(x_{*}, x_{0}\right)$
subject to $\quad f$ is convex and L-smooth relative to h_{e} (entropic-smooth),
x_{1}, \ldots, x_{N} are generated from x_{0} by BGD with step size $1 / L$,
in the variables $x_{0}, \ldots, x_{N}, x_{*}, f$.
Not solvable yet (convex program on cone of pairwise Kullback-Leibler matrices)

Outline

- Bregman gradient methods and relative smoothness
- Application to low-rank minimization
- Theoretical complexity: lower bound and computer-aided analyses

■ Stochastic variants

Bregman stochastic gradient descent

Joint work with Hadrien Hendrikx and Mathieu Even

$$
\begin{equation*}
\min _{x \in \mathcal{C}} f(x):=\mathbb{E}_{\xi}\left[f_{\xi}(x)\right] \tag{P}
\end{equation*}
$$

where functions f_{ξ} are L-smooth and μ-strongly convex relative to h.

Bregman SGD

$$
\begin{aligned}
& x_{k+1}=\underset{u \in \mathcal{C}}{\operatorname{argmin}}\left\langle g_{k}, u-x_{k}\right\rangle+\frac{1}{\lambda} D_{h}\left(u, x_{k}\right) \\
& g_{k}=\nabla f_{\xi_{k}}\left(x_{k}\right) \text { for } \xi_{k} \text { such that } \mathbb{E}\left[g_{k}\right]=\nabla f\left(x_{k}\right) .
\end{aligned}
$$

Convergence rate: with $\lambda=1 /(2 L)$,

$$
\mathbb{E}\left[D_{h}\left(x^{\star}, x_{k}\right)\right] \leq \underbrace{\left(1-\frac{\mu}{2 L}\right)^{k} D_{h}\left(x^{\star}, x_{0}\right)}_{\text {linear convergence }}+\underbrace{\lambda \frac{\sigma^{2}}{\mu}}_{\text {noise }} .
$$

Noise assumption: σ^{2} is the variance of $\nabla f_{\xi}\left(x^{*}\right)$ "with respect to Bregman divergence".

Variance reduction

We now assume that the problem is a finite sum:

$$
\min _{x \in \mathcal{C}} f(x):=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x)
$$

where f_{i} are L-smooth and μ-strongly convex relative to h.
Variance reduction methods leverage the finite sum assumption to obtain fast convergence rates (Schmidt et al., 2013; Johnson and Zhang, 2013; Defazio et al., 2014).

Bregman-SAGA

$$
\begin{aligned}
& x_{k+1}=\underset{u \in \mathcal{C}}{\operatorname{argmin}}\left\langle\tilde{g}_{k}, u-x_{k}\right\rangle+\frac{1}{\lambda} D_{h}\left(u, x_{k}\right) \\
& \tilde{g}_{k}=\nabla f_{i_{k}}\left(x_{k}\right)-\underbrace{\sum_{i=1}^{n} \beta_{i} \nabla f_{i}\left(\phi_{i}\right)}_{\text {contains previously computed gradients }}
\end{aligned}
$$

Same situation as for acceleration: asymptotical convergence result under additional regularity of h.

Experiments: tomographic reconstruction problem

Inverse problem with Poisson noise

$$
f(x)=D_{K L}(b, A x), \quad h(x)=\sum_{i=1}^{d}-\log x^{i}
$$

Sinogram $A x^{*}$

Perspectives

■ Relatively-smooth optimization: emerging subject, with many applications left to be explored;

- Algorithmic extensions (acceleration, variance reduction...): find the right regularity properties;
- Adaptivity to improve practical performance.

Thank you!

References

Alfred Auslender and Marc Teboulle. Interior Gradient and Proximal Methods for Convex and Conic Optimization. SIAM Journal on Optimization, 16(3):697-725, 2006.
Heinz H. Bauschke, Jérôme Bolte, and Marc Teboulle. A Descent Lemma Beyond Lipschitz Gradient Continuity: First-Order Methods Revisited and Applications. Mathematics of Operations Research, 42(2):330-348, 2017.
Jérôme Bolte, Shoham Sabach, Marc Teboulle, and Yakov Vaisbourd. First Order Methods Beyond Convexity and Lipschitz Gradient Continuity with Applications to Quadratic Inverse Problems. SIAM Journal on Optimization, 28(3):2131-2151, 2018.
Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives. pages 1-15, 2014.
Yoel Drori and Marc Teboulle. Performance of First-Order Methods for Smooth Convex Minimization: A Novel Approach. Mathematical Programming, 145(1-2):451-482, 2014.
Filip Hanzely, Peter Richtarik, and Lin Xiao. Accelerated Bregman Proximal Gradient Methods for Relatively Smooth Convex Optimization. Computational Optimization and Applications, 2021.
Hadrien Hendrikx, Lin Xiao, Sébastien Bubeck, Francis Bach, and Laurent Massoulié. Statistically preconditioned accelerated gradient method for distributed optimization. In International Conference on Machine Learning, number 119, pages 4203-4227, 2020.
Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction. Advances in Neural Information Processing Systems, 2013.
Yurii Nesterov. A Method of Solving A Convex Programming Problem With Convergence rate $\mathrm{O}\left(1 / k^{\wedge} 2\right)$. Soviet Mathematics Doklady, 27 (2):372-376, 1983.

Mark Schmidt, Nicolas Roux, and Francis Bach. Minimizing finite sums with the stochastic average gradient. Mathematical Programming, 162, 092013.
Adrien B. Taylor, Julien M. Hendrickx, and François Glineur. Smooth Strongly Convex Interpolation and Exact Worst-Case Performance of First-Order Methods. Mathematical Programming, 161(1-2):307-345, 2017.

Supplementary material

How to solve the PEP?

Performance Estimation Problem

$$
\begin{array}{ll}
\operatorname{maximize} & \left(f_{N}-f_{*}\right) /\left(h_{*}-h_{0}-\left\langle s_{0}, x_{*}-x_{0}\right\rangle\right) \\
\text { subject to } & h \text { is a kernel (differentiable and strictly convex), } \\
& f \text { is convex and } L \text {-smooth relative to } h, \\
& f\left(x_{i}\right)=f_{i}, h\left(x_{i}\right)=h_{i}, \nabla f\left(x_{i}\right)=g_{i}, \nabla h\left(x_{i}\right)=s_{i} \quad \forall i \in I, \\
& x_{1}, \ldots, x_{N} \text { are generated from } x_{0} \text { by BGD with step size } 1 / L,
\end{array}
$$

in the variables $\left\{x_{i}, f_{i}, h_{i}, g_{i}, s_{i}\right\}_{i \in I}, f, h$.

- Reduction to a finite-dimensional problem (Drori and Teboulle, 2014);

How to solve the PEP?

Performance Estimation Problem

$$
\begin{array}{ll}
\operatorname{maximize} & \left(f_{N}-f_{*}\right) /\left(h_{*}-h_{0}-\left\langle s_{0}, x_{*}-x_{0}\right\rangle\right) \\
\text { subject to } & \text { there exist } f, h \text { such that } h \text { is a kernel, } \\
& f \text { is convex and } L \text {-smooth relative to } h, \\
& f\left(x_{i}\right)=f_{i}, h\left(x_{i}\right)=h_{i}, \nabla f\left(x_{i}\right)=g_{i}, \nabla h\left(x_{i}\right)=s_{i} \quad \forall i \in I, \\
& x_{1}, \ldots, x_{N} \text { are generated from } x_{0} \text { by BGD with step size } 1 / L,
\end{array}
$$

in the variables $\left\{x_{i}, f_{i}, h_{i}, g_{i}, s_{i}\right\}_{i \in I}$.

- Reduction to a finite-dimensional problem (Drori and Teboulle, 2014);
- Equivalence with original problem is guaranteed by interpolation conditions;

How to solve the entropic PEP ?

- Reduction to a finite-dimensional problem by replacing f with its discrete representation

$$
\left\{\left(f_{i}, g_{i}\right)\right\}_{1 \leq i \leq N}=\left\{\left(f\left(x_{i}\right), \nabla f\left(x_{i}\right)\right)\right\}_{1 \leq i \leq N} .
$$

- Equivalence with original problem is guaranteed by interpolation conditions, which we extend to the entropic-smooth setting:

$$
f_{i}-f_{j}-\left\langle g_{j}, x_{i}-x_{j}\right\rangle \geq L D_{\mathrm{KL}}\left[x_{i}, x_{i} \circ \exp \left(\frac{g_{j}-g_{i}}{L}\right)\right] \quad \forall i, j
$$

- The PEP is then equivalent to a finite-dimensional problem on a convex cone, the Kullback-Leibler cone with log-linear constraints:

$$
\mathcal{K}_{m}(A)=\left\{\begin{array}{c|c}
{\left[D_{\mathrm{KL}}\left(x_{i}, x_{j}\right)\right]_{1 \leq i, j \leq m}} & \begin{array}{c}
d \in \mathbb{N} \text { and } x_{1}, \ldots x_{m} \in \mathbb{R}^{d} \\
\text { such that } \sum_{j=1}^{m} A_{i j} \log \left(x_{j}\right)=0 \\
i=1 \ldots q
\end{array}
\end{array}\right\}
$$

... no known solver yet

Bregman SGD - theoretical guarantees

Assume

■ Sampling: $g_{k}=\nabla f_{\xi_{k}}\left(x_{k}\right)$ for some ξ_{k} and $\mathbb{E}_{\xi_{k}}\left[g_{k}\right]=\nabla f\left(x_{k}\right)$,

- Variance:

$$
\mathbb{E}_{\xi_{k}}\left[P_{x_{k}}\left(\nabla f_{\xi_{k}}\left(x^{*}\right)\right)\right] \leq \sigma^{2}
$$

where $P_{x}(v)$ is the Bregman counterpart of $\|v\|^{2}$:

$$
P_{x}(v)=\frac{1}{4 \lambda^{2}} D_{h^{*}}[\nabla h(x)-2 \lambda v, \nabla h(x)]
$$

■ Regularity: functions f_{ξ} are L-smooth and μ-strongly convex relative to h.

Theorem (D., Hendrikx, Even, 2021)

The iterates of Bregman SGD with step size $\lambda=1 /(2 L)$ satisfy

$$
\mathbb{E}\left[D_{h}\left(x^{\star}, x_{k}\right)\right] \leq \underbrace{\left(1-\frac{\mu}{2 L}\right)^{k} D_{h}\left(x^{\star}, x_{0}\right)}_{\text {linear convergence }}+\underbrace{\lambda \frac{\sigma^{2}}{\mu}}_{\text {noise }}
$$

Bregman-SAGA, theoretical guarantees

Assumption: gain function

There exists a gain function G such that for any $x, y, v \in \mathbb{R}^{d}$ and $\lambda \in[-1,1]$,

$$
D_{h^{*}}(x+\lambda v, x) \leq G(x, y, v) \lambda^{2} D_{h^{*}}(y+v, y)
$$

G determines the step size and convergence rate.

- h is quadratic: then $G=1$, Bregman-SAGA rate is

$$
\mathcal{O}\left(1-\min \left(\frac{\mu}{8 L}, \frac{1}{2 n}\right)\right)^{k} .
$$

- h^{*} has Lipschitz Hessian (and extra local smoothness): with the right choice of step size, Bregman-SAGA rate is

$$
\mathcal{O}\left(1-\min \left(\frac{\mu}{8 G_{k} L}, \frac{1}{2 n}\right)\right)^{k} \quad \text { with } G_{k} \rightarrow 1 \text { as } k \rightarrow \infty
$$

Asymptotical rate under additional regularity: same situation as for accelerated BGD (Hendrikx et al., 2020; Hanzely et al., 2021)

