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Directed by Jérôme Bolte and Alexandre d’Aspremont.

Joint work with Adrien Taylor, Dmitrii Ostrovskii, Hadrien Hendrikx, Mathieu Even.

September 14, 2021

1/31



Large-scale optimization

We want to solve

min
x∈C

f(x) (P)

where C is a convex set of Rd, d� 1.

Signal processing

Recovery of unknown signal from
partial and noisy observations

Source: LASIP toolbox

Machine learning

Learning a prediction function from
training data

Source: ipullrank.com
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Our objective

min
x∈C

f(x) (P)

� Iterative methods: solve a series of subproblems to compute a sequence

x0, x1, x2, . . . xk . . .

which approaches the solution x∗.

� First-order methods: for large-scale problems, the algorithm has only cheap
access to first-order oracle

x 7→
(
f(x),∇f(x)

)
.

� In practice, f is not a black box: use problem structure to devise efficient
algorithms, with theoretical guarantees.

� Our approach: Bregman methods and relatively-smooth optimization.

∇2f � L∇2h (Bauschke, Bolte, Teboulle, 2017)
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Outline

� Bregman gradient methods and relative smoothness

� Application to low-rank minimization

� Theoretical complexity: lower bound and computer-aided analyses

� Stochastic variants
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Gradient descent

xk+1 = ΠC [xk − λ∇f(xk)] (GD)

λ is the step size, ΠC denotes
projection on C.

xk

xk+1

−λ∇f(xk)
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Smoothness

xk+1 = argmin
u∈C

f(xk) + 〈∇f(xk), u− xk〉+
1

2λ
‖u− xk‖2 (GD)

GD iteratively minimizes a quadratic approximation of f : when is it accurate?

Smoothness assumption: if f has a L-Lipschitz continuous gradient, then for
every λ ∈ (0, 1/L],

f(u) ≤ f(xk) + 〈∇f(xk), u− xk〉+
1

2λ
‖u− xk‖2.

f

Qf

xk
xk+1

The quadratic model is an upper
approximation of f .
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Bregman gradient descent

Are we limited to a quadratic model? A more general method is

xk+1 = argmin
u∈C

f(xk) + 〈∇f(xk), u− xk〉+
1

λ
Dh(u, xk) (BGD)

where
Dh(x, y) = h(x)− h(y)− 〈∇h(y), x− y〉 ≥ 0

is the Bregman divergence induced by some strictly convex kernel function h
adapted to C.

Examples:

� Euclidean: h(x) = 1
2‖x‖

2: then Dh(x, y) = 1
2‖x− y‖

2,

� Entropy: h(x) =
∑d
i=1 x

i log(xi)− xi, then Dh = DKL and (BGD) writes

xk+1 = xk · exp[−λ∇f(xk)],

Also called Mirror descent / NoLips...
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Effect of Bregman divergence

Comparing the Bregman update with ∇f(xk) = (4, 1) from different starting
points and kernel functions:

(a) Euclidean (b) Entropy
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Effect of Bregman divergence

(c) Euclidean (d) Entropy
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Relative smoothness

(Bauschke, Bolte, Teboulle, 2017)

f(u)

f(x) + 〈∇f(x), u− x〉+ LDh(u, x)

x

f is L-smooth relative to the kernel function h if

f(u) ≤ f(x) + 〈∇f(x), u− x〉+ LDh(u, x).

For C2 functions, equivalent to

∇2f(x) � L∇2h(x).

Similarly, relative strong convexity is defined as (Lu, Freund, Nesterov, 2018):

µ∇2h(x) � ∇2f(x).
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Example of relatively-smooth function

Linear inverse problems with Poisson noise (Bauschke et al., 2017): let
b ∈ Rm, A ∈ Rm×d+ ,

min
x∈Rn+

DKL(b, Ax) =

m∑
j=1

bj log
( bj
Ajx

)
−Ajx+ bj

Applications in medical imaging, astronomy...

Figure 1: Example for d = 2

Standard smoothness does not hold
as the Hessian is singular when
Ajx → 0, but relative smoothness
holds with

h(x) =

d∑
i=1

− log(xi).
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Convergence guarantees

If f is L-smooth relative to h, then BGD with step size λ = 1/L satisfies:

� If f is convex (Bauschke, Bolte, Teboulle, 2017):

f(xN)− f(x∗) ≤
LDh(x∗, x0)

N

� If f is µ-strongly convex relative to h (Lu, Freund, Nesterov 2018):

f(xN)− f(x∗) ≤ L
(

1− µ

L

)N
Dh(x∗, x0)

� If f is non-convex (Bolte et al., 2018):

◦ the sequence {f(xk)} is nonincreasing,

◦ if C = Rd and f satisfies the Kurdyka–Lojasiewicz property: the sequence
{xk} converges to a critical point.
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How to choose the kernel in practice?

xk+1 = argmin
u∈C

f(xk) + 〈∇f(xk), u− xk〉+
1

λ
Dh(u, xk) (BGD)

We seek h such that

� the inner objective in (BGD) is a good approximation of f , the inequality

∇2f(x) � L∇2h(x)

holds as tightly as possible;

� the inner minimization problem can be solved easily.

There is often a tradeoff between these two goals!
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Outline

� Bregman gradient methods and relative smoothness

� Application to low-rank minimization

� Theoretical complexity: lower bound and computer-aided analyses

� Stochastic variants
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Non-convex low-rank minimization

min
X∈Rn×r

L(XXT )︸ ︷︷ ︸
differentiable error function

+ g(X)︸ ︷︷ ︸
nonsmooth penalty

r ∈ N is the target rank, L is a L1-smooth error function (typically a quadratic),

� Example: symmetric nonnegative matrix factorization

min
X∈Rn×r

‖XXT −M‖2 subject to X ≥ 0.

� f(X) = L(XXT ) is not globally smooth (typically quartic) → standard
Euclidean methods might not be adapted.

Objective

Design kernels h adapted to f by leveraging the quartic structure, and apply
Bregman proximal gradient method

Xk+1 = argmin
U∈C

f(Xk) + 〈∇f(Xk), U −Xk〉+
1

λ
Dh(U,Xk) + g(U) (BPG)
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Two different kernels

The “simple” norm kernel

hn(X) =
α

4
‖X‖4 +

σ

2
‖X‖2.

Proposition (D., d’Aspremont, Bolte, 2021): f is 1-smooth relative to hn for
α, σ high enough.

� Bregman update: easy (computing ∇F (Xk) + simple scalar equation).

The “more refined” Gram kernel

hG(X) =
α

4
‖X‖4 +

β

4
‖XTX‖2 +

σ

2
‖X‖2.

Proposition (D., d’Aspremont, Bolte, 2021): f is 1-smooth relative to hG for
α, β, σ high enough.

� Better approximation of f than hn for well-conditionned L;

� Bregman update: harder. Computable only for unpenalized problems (g = 0) and requires

solving a subproblem of dimension r (the target rank).
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Experiments: Distance Matrix Completion

Recover the position of n points X∗1 , . . . , X
∗
n in Rr from an incomplete set of

pairwise distances {
dij = ‖X∗i −X∗j ‖2 | (i, j) ∈ Ω

}
.

min
X∈Rn×r

f(X) =
∑

(i,j)∈Ω

(
‖Xi −Xj‖2 − dij

)2
(EDMC)

Unconstrained problem: we compare the norm kernel hn with the Gram kernel
hG.

Experiments on synthetic Helix

dataset with 10% known distances,
dimension r = 3.
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Experiments: Distance Matrix Completion

(a) n = 2000 (b) n = 5000

Figure 2: Experiments on Helix dataset
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Outline

� Bregman gradient methods and relative smoothness

� Application to low-rank minimization

� Theoretical complexity: lower bound and computer-aided analyses

� Stochastic variants
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The question of acceleration

We recall the convergence rate of BGD for relatively smooth convex functions

f(xN)− f(x∗) ≤
LDh(x∗, x0)

N
.

Is there an algorithm that does better ?

Algorithm
Supplementary
assumptions

Convergence
rate

Accelerated gradient descent
(Nesterov, 1983)

h(x) = 1
2‖x‖

2 O(1/N2)

Accelerated BGD (Auslender and

Teboulle, 2006)

h is µ-strongly convex and f
is L-smooth

O(1/N2)

Accerated BGD (Hendrikx et al.,

2020; Hanzely et al., 2021)

h satisfies triangle scaling
inequality

Improved
asymptotically

These assumptions are quite restrictive... What about the general case?
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A lower bound for relatively-smooth convex minimization

In the general case, the O(1/N) rate of BGD is optimal.

Theorem (D., Taylor, d’Aspremont, Bolte, 2021)

For every N ≥ 1, there exists functions fN , hN : R2N+1 → R and x0 ∈ R2N+1

such that

� fN is L-smooth relative to hN ,

� for any Bregman first-order method A initialized at x0, after N iterations
we have

fN(xN)− fN(x∗) ≥
LDhN(x∗, x0)

4N + 1
.

� Bregman first-order method: uses ∇f,∇h,∇h∗ and linear operations.

� Additional assumptions are needed to achieve acceleration.

� Worst-case functions fN , hN are “nearly” nondifferentiable.
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Computer-aided analyses

Performance estimation: computing the worst-case behavior of a first-order
through optimization (Drori and Teboulle, 2014; Taylor et al., 2017).

Recall the convergence rate of BGD for f convex and L-smooth relative to h:

f(xN)− f(x∗) ≤
LDh(x∗, x0)

N

Is this the best possible bound for generic f and h ? What are the corresponding
worst-case functions ?

Performance Estimation Problem

maximize

subject to h is a kernel (differentiable and strictly convex),

f is convex and L-smooth relative to h,

x1, . . . , xN are generated from x0 by BGD with step size 1/L,

in the variables x0, . . . , xN , x∗, f, h.
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How to solve the PEP?

� Reduction to a finite-dimensional problem by replacing f, h with their discrete
representations at x0, . . . xN (Drori and Teboulle, 2014):

(fi, gi) =
(
f(xi),∇f(xi)

)
,

(hi, si) =
(
h(xi),∇h(xi)

)
.

� Equivalence with original problem is guaranteed by interpolation conditions
(Taylor et al., 2017), which we extend to the relatively smooth setting.

xi 6= xj =⇒ hi − hj − 〈sj, xi − xj〉 > 0, (strict convexity of h)

si 6= sj =⇒ xi 6= xj, (differentiability of h)

...

� The PEP is then equivalent to a finite-dimensional problem in
{(xi, fi, gi, hi, si)}, with quadratic constraints: can be solved via semidefinite
programming.
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Results and insights

� The numerical value of the PEP is exactly L/N : the bound

f(xN)− f(x∗) ≤
LDh(x∗, x0)

N

is tight in the worst case for BGD.

� Limiting nonsmooth behavior: the feasible set is not closed; the supremum
is reached as (f, h) approach some nonsmooth limiting functions (f, h).

h

Differentiable strictly convex functions

Convex functions

� With some modifications, discovered worst-case functions which are hard for
any Bregman method → general lower bound
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The case of entropy

Joint work with D. Ostrovskii

The case of generic h is too hard: let us now focus on a particular kernel, the
entropy

he(x) =

d∑
i=1

xi log xi − xi

Performance Estimation Problem - entropic case

maximize
(
f (xN)− f (x∗)

)
/Dhe(x∗, x0)

subject to f is convex and L-smooth relative to he (entropic-smooth),

x1, . . . , xN are generated from x0 by BGD with step size 1/L,

in the variables x0, . . . , xN , x∗, f .

Not solvable yet (convex program on cone of pairwise Kullback-Leibler matrices)
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Outline

� Bregman gradient methods and relative smoothness

� Application to low-rank minimization

� Theoretical complexity: lower bound and computer-aided analyses

� Stochastic variants
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Bregman stochastic gradient descent

Joint work with Hadrien Hendrikx and Mathieu Even

min
x∈C

f(x) := Eξ [fξ(x)] (P)

where functions fξ are L-smooth and µ-strongly convex relative to h.

Bregman SGD

xk+1 = argmin
u∈C

〈gk, u− xk〉+
1

λ
Dh(u, xk),

gk = ∇fξk(xk) for ξk such that E [gk] = ∇f(xk).

Convergence rate: with λ = 1/(2L),

E [Dh(x?, xk)] ≤ (1− µ

2L
)kDh(x?, x0)︸ ︷︷ ︸

linear convergence

+ λ
σ2

µ︸︷︷︸
noise

.

Noise assumption: σ2 is the variance of ∇fξ(x∗) “with respect to Bregman divergence”.
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Variance reduction

We now assume that the problem is a finite sum:

min
x∈C

f(x) :=
1

n

n∑
i=1

fi(x),

where fi are L-smooth and µ-strongly convex relative to h.

Variance reduction methods leverage the finite sum assumption to obtain fast convergence

rates (Schmidt et al., 2013; Johnson and Zhang, 2013; Defazio et al., 2014).

Bregman-SAGA

xk+1 = argmin
u∈C

〈g̃k, u− xk〉+
1

λ
Dh(u, xk)

g̃k = ∇fik(xk)−
n∑
i=1

βi∇fi(φi)︸ ︷︷ ︸
contains previously computed gradients

Same situation as for acceleration: asymptotical convergence result under additional regularity

of h.
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Experiments: tomographic reconstruction problem

Inverse problem with Poisson noise

f(x) = DKL(b, Ax), h(x) =

d∑
i=1

− log xi.

Original signal x∗

Sinogram Ax∗
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Perspectives

� Relatively-smooth optimization: emerging subject, with many applications
left to be explored;

hscary

Differentiable strictly convex functions

Convex functions

Smooth strongly convex functions

� Algorithmic extensions (acceleration, variance reduction...): find the right
regularity properties;

� Adaptivity to improve practical performance.

Thank you!
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How to solve the PEP?

Performance Estimation Problem

maximize
(
fN − f∗

)
/
(
h∗ − h0 − 〈s0, x∗ − x0〉

)
subject to h is a kernel (differentiable and strictly convex),

f is convex and L-smooth relative to h,

f(xi) = fi, h(xi) = hi, ∇f(xi) = gi, ∇h(xi) = si ∀i ∈ I,

x1, . . . , xN are generated from x0 by BGD with step size 1/L,

in the variables {xi, fi, hi, gi, si}i∈I, f, h.

� Reduction to a finite-dimensional problem (Drori and Teboulle, 2014);
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How to solve the PEP?

Performance Estimation Problem

maximize
(
fN − f∗

)
/
(
h∗ − h0 − 〈s0, x∗ − x0〉

)
subject to there exist f, h such that h is a kernel,

f is convex and L-smooth relative to h,

f(xi) = fi, h(xi) = hi, ∇f(xi) = gi, ∇h(xi) = si ∀i ∈ I,

x1, . . . , xN are generated from x0 by BGD with step size 1/L,

in the variables {xi, fi, hi, gi, si}i∈I.

� Reduction to a finite-dimensional problem (Drori and Teboulle, 2014);

� Equivalence with original problem is guaranteed by interpolation conditions;
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How to solve the entropic PEP ?

� Reduction to a finite-dimensional problem by replacing f with its discrete
representation

{(fi, gi)}1≤i≤N =
{(
f(xi),∇f(xi)

)}
1≤i≤N .

� Equivalence with original problem is guaranteed by interpolation conditions,
which we extend to the entropic-smooth setting:

fi − fj − 〈gj, xi − xj〉 ≥ LDKL

[
xi, xi ◦ exp

(
gj − gi
L

)]
∀i, j.

� The PEP is then equivalent to a finite-dimensional problem on a convex cone,
the Kullback-Leibler cone with log-linear constraints:

Km(A) =


d ∈ N and x1, . . . xm ∈ Rd[

DKL(xi, xj)
]

1≤i,j≤m
such that

∑m
j=1Aij log(xj) = 0,

i = 1 . . . q

 .

... no known solver yet
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Bregman SGD - theoretical guarantees

Assume

� Sampling: gk = ∇fξk(xk) for some ξk and Eξk [gk] = ∇f(xk),

� Variance:
Eξk

[
Pxk

(
∇fξk(x

∗)
)]
≤ σ2

where Px(v) is the Bregman counterpart of ‖v‖2:

Px(v) =
1

4λ2
Dh∗

[
∇h(x)− 2λv,∇h(x)

]
� Regularity: functions fξ are L-smooth and µ-strongly convex relative to h.

Theorem (D., Hendrikx, Even, 2021)

The iterates of Bregman SGD with step size λ = 1/(2L) satisfy

E [Dh(x?, xk)] ≤ (1− µ

2L
)kDh(x?, x0)︸ ︷︷ ︸

linear convergence

+ λ
σ2

µ︸︷︷︸
noise

.
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Bregman-SAGA, theoretical guarantees

Assumption: gain function

There exists a gain function G such that for any x, y, v ∈ Rd and λ ∈ [−1, 1],

Dh∗ (x+ λv, x) ≤ G(x, y, v)λ2Dh∗ (y + v, y) .

G determines the step size and convergence rate.

� h is quadratic: then G = 1, Bregman-SAGA rate is

O
(

1−min

(
µ

8L
,

1

2n

))k
.

� h∗ has Lipschitz Hessian (and extra local smoothness): with the right choice
of step size, Bregman-SAGA rate is

O
(

1−min

(
µ

8GkL
,

1

2n

))k
with Gk → 1 as k →∞.

Asymptotical rate under additional regularity: same situation as for accelerated BGD (Hendrikx

et al., 2020; Hanzely et al., 2021)

37/31


