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Problem setup

Consider the problem

min
x∈C

f(x) := Eξ [fξ(x)] , (P)

where C ⊂ Rd is convex and fξ : Rd → R are differentiable functions.

Standard method: (projected) Stochastic Gradient Descent

xt+1 = ΠC [xt − ηtgt],

where

E [gt] = ∇f(xt)

is an unbiased gradient estimate. An equivalent form is

xt+1 = arg min
x∈C

{
f(xt) + g>t (x− xt) +

1

2ηt
‖x− xt‖2

}
(SGD)
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Stochastic gradient descent

xt+1 = arg min
x∈C

{
f(xt) + g>t (x− xt) +

1

2ηt
‖x− xt‖2

}
(SGD)

When is this method efficient ?

• noise: the variance of the gradient estimate E
[
‖gt −∇f(xt)‖2

]
is small,

• smoothness: the quadratic model is a good approximation of f .

If f has a L-Lipschitz continuous gradient, then for every η ∈ (0, 1/L],

f(x) ≤ f(xt) +∇f(xt)
>(x− xt) +

1

2η
‖x− xt‖2.

f(x)

Qf (x, xt)

xt

The quadratic model is an upper

approximation of f .
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Bregman stochastic gradient descent

We can try to find a better model of f by regularizing with a more general Bregman

divergence:

xt+1 = arg min
x∈C

{
f(xt) + g>t (x− xt) +

1

ηt
Dh(x, xt)

}
(B-SGD)

where

Dh(x, y) = h(x)− h(y)−∇h(y)>(x− y) ≥ 0,

is the Bregman divergence induced by some differentiable strictly convex reference

function h.

When is this a good approximation of f ? When f is smooth relative to h:

f(x) ≤ f(xt) +∇f(xt)
>(x− xt) +

1

η
Dh(x, xt).

Note: also known as stochastic Mirror Descent.
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Outline

1. Relatively-smooth optimization

2. Bregman stochastic gradient descent

3. Variance reduction for finite sum problems
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Relatively-smooth optimization



Bregman divergences

Let h : Rd → R be a convex reference function, and Dh its Bregman divergence

Dh(x, y) = h(x)− h(y)−∇h(y)>(x− y) ≥ 0.

Examples:

• Quadratic h:

• h(x) = 1
2
‖x‖2: then Dh(x, y) =

1
2
‖x− y‖2, we recover the Euclidean setting

• h(x) = 1
2
x>Qx with Q ∈ S++

d : linear preconditioning

• Entropy h(x) =
∑d
i=1 x

i log(xi)− xi, exponential weights algorithm

xt+1 = xt · exp[−ηtgt]

• Log-barrier h(x) =
∑d
i=1− log(xi)

• Quartic h(x) = 1
4
‖x‖4 + 1

2
‖x‖2
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Relative smoothness

f(u)

f(x) +∇f(x)>(u− x) + LDh(u, x)

x

How to choose the reference function h ?

A natural idea is to require the inner

objective of (deterministic) BGD to be a

global majorant of the objective function.

Relative smoothness (Bauschke, Bolte, Teboulle 2017)

f is L-smooth relative to the reference function h if

f(u) ≤ f(x) +∇f(x)>(u− x) + LDh(u, x) ∀u, x ∈ C.

Equivalent to Lh− f convex, or, for twice differentiable functions, that

∇2f(x) � L∇2h(x)

Similarly, relative strong convexity is defined as (Lu, Freund, Nesterov 2018):

µ∇2h(x) � ∇2f(x)

Reduces to the usual notions of smoothness and strong convexity for h(x) = 1
2
‖x‖2.

We denote κ = L
µ

the relative condition number .
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Example 1: problems with unbounded curvature

Linear inverse problems with Poisson noise (Bauschke et al., 2017): let

b ∈ Rn, A ∈ Rn×d+ ,

min
x∈Rd

+

DKL(b, Ax) =
n∑
j=1

bj log
( bj
Ajx

)
−Ajx+ bj

Standard smoothness does not hold as the Hessian is singular when Ajx→ 0, but

relative smoothness holds with L =
∑
i bi and the log barrier

h(x) =

d∑
i=1

− log(xi).

7 / 20



Example 1: problems with unbounded curvature

Linear inverse problems with Poisson noise (Bauschke et al., 2017): let

b ∈ Rn, A ∈ Rn×d+ ,

min
x∈Rd

+

DKL(b, Ax) =
n∑
j=1

bj log
( bj
Ajx

)
−Ajx+ bj

Standard smoothness does not hold as the Hessian is singular when Ajx→ 0, but

relative smoothness holds with L =
∑
i bi and the log barrier

h(x) =

d∑
i=1

− log(xi).

7 / 20



Example 2: Bregman preconditioning

Statistical preconditioning for distributed optimization(Hendrikx et al., 2020):

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x)

Even if f is smooth, better performance can be achieved by choosing

h(x) = f1(x) +
λ

2
‖x‖2

Typically, f1 is the loss function on a part of a dataset of size nprec. Relative

smoothness and strong convexity hold with high probability, and allows to improve

conditioning as

κrel = 1 +O
(
κeucl

nprec

)
.

Tradeoff: solving the Bregman subproblem becomes harder as nprec grows.
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Dual Bregman divergence

Introduce the convex conjugate of h as

h∗(y) = sup
x∈Rd

x>y − h(x).

Then (under some regularity properties) we have that

Dh(x, y) = Dh∗ (∇h(y),∇h(x)) .

Typically, the quantity

Dh∗ (∇h(x) + v,∇h(x))

represents the “squared length relative to h” of a vector v ∈ Rd at x ∈ C, and is the

analogous of ‖v‖2 in the Euclidean setting.
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Bregman Stochastic Gradient Descent



Variance assumption

Recall the problem

min
x∈C

f(x) := Eξ [fξ(x)] , (P)

Let η > 0 be the step size.

Assumption on stochastic gradients

The stochastic gradients {gt}t≥0 satisfy the following conditions:

• Sampling: gt = ∇fξt(xt), with Eξt [fξt ] = f ,

• Variance: there exists a constant σ2 > 0 such that

1

2η2
Eξt

[
Dh∗

(
∇h(xt)− 2η∇fξt(x

?),∇h(xt)
)]
≤ σ2 (1)

If h is µeucl-strongly convex, then (1) holds for instance if

Eξt
[
‖∇fξt(x

?)‖2
]
≤ µeucl · σ2
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Convergence analysis of B-SGD

xt+1 = arg min
x∈C

{
f(xt) + g>t (x− xt) +

1

η
Dh(x, xt)

}
(B-SGD)

Convergence rate, relatively strongly convex case

In addition to the previous assumption, assume that

• fξ is L-smooth relative to h for every ξ,

• f is µ-strongly convex relative to h,

• η ≤ 1/(2L),

then the iterates of B-SGD satisfy

E [Dh(x?, xt)] ≤ (1− ηL)tDh(x?, x0) + η
σ2

µ
. (2)

• Generalizes the Euclidean result for SGD

• Interpolation setting: if σ2 = 0, i.e., ∇fξ(x∗) = 0 for all ξ, linear convergence

rate of Bregman gradient descent (Lu et al, 2018) is recovered.
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Convergence analysis of B-SGD

xt+1 = arg min
x∈C

{
f(xt) + g>t (x− xt) +

1

η
Dh(x, xt)

}
(B-SGD)

Convergence rate, convex case

With the same assumptions than before, we have, if µ = 0,

E

[
1

T

T∑
t=0

Df (x?, xt)

]
≤ Dh(x?, x0)

ηT
+ ησ2 (3)
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Variance reduction



Bregman-SAGA

We now assume that the problem is a finite sum:

min
x∈C

f(x) :=
1

n

n∑
i=1

fi(x),

where fi are L-smooth and µ-strongly convex relative to h.

In the Euclidean setting, variance reduction can be used to obtain fast linear

convergence rates: SAG (Schmidt et al., 2013), SVRG (Johnson and Zhang, 2013),

SAGA (Defazio et al., 2014).

Objective: combine information used by gradients of previous iterates to reduce the

variance of gt.
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Bregman-SAGA

Algorithm 1 Bregman-SAGA((ηt)t≥0, x0)

1: φi = x0 for i = 1, ..., n

2: for t = 0, 1, 2, . . . do

3: Pick it ∈ {1, ..., n} uniformly at random

4: gt = ∇fit(xt)−∇fit(φtit) + 1
n

∑n
j=1∇fj(φ

t
j)

5: xt+1 = arg minx
{
ηtg
>
t x+Dh(x, xt)

}
6: φt+1

it
= xt, and store ∇fit(φt+1

it
).

7: φt+1
j = φtj for j 6= it.

8: end for=0
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Additional regularity assumptions

Assumption: gain function

There exists a gain function G such that for any x, y, v ∈ Rd and λ ∈ [−1, 1],

Dh∗ (x+ λv, x) ≤ G(x, y, v)λ2Dh∗ (y + v, y) .

• Models lack of homogeneity of Bregman divergence for nonquadratic functions

• G will determine the theoretical step size needed for convergence of

Bregman-SAGA

• Same issue as for accelerated Bregman algorithms: additional assumptions are

unavoidable (Dragomir et al., 2021)
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Bregman-SAGA convergence analysis

Quadratic case: if h is quadratic, then G can be chosen equal to 1 and the rate in

expected function values is

E [ψt] ≤
(

1−min

(
1

8κ
,

1

2n

))t
ψ0.

“Mirror descent” setting: if h is µeucl-strongly convex and f is Leucl-smooth w.r.t

the Euclidean norm, then

E [ψt] ≤
(

1−min

(
µeucl · µ
8Leucl

,
1

2n

))t
ψ0.

Issue: Leucl
µeucl

can be very large. How to get a rate that depends only on the relative

condition number κ for nonquadratic h ?
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Bregman-SAGA convergence analysis

Lipschitz-Hessian setting: if h is locally smooth and ∇2h∗ is M -Lipschitz,

E [ψt+1] ≤
(

1−min

(
1

8Gtκ
,

1

2n

))
ψt, (4)

with Gt → 1 as t→ +∞, for well-chosen step sizes {ηt}t≥0.

The “good” convergence rate is reached asymptotically: same result as for accelerated

Bregman gradient descent (Hendrikx et al., 2020).
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Numerical experiments



Poisson inverse problems

min
x∈Rd

+

n∑
j=1

(
bj log

( bj
Ajx

)
−Ajx+ bj

)
with h(x) = −

d∑
i=1

log xi

MU: standard baseline algorithm (a.k.a Lucy-Richardson/Expectation-Maximization)

0 500 1000 1500 2000
Epoch

10−3

10−2

10−1

Su
bo

pt
im

al
ity

BSGD
MU
DANE (BGD)

(a) Toy problem, interpolation setting, n = 10 000,

d = 1000

0 200 400 600 800
Epoch

10−1

100

101

102

103

Su
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pt
im

al
ity

MU
SAGA
BSGD
BGD

(b) Tomographic reconstruction problem, n = 360,

d = 10 000
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Distributed optimization

Logistic regression, RCV1 dataset. n = 100 nodes with N = 10 000 samples each.

h is the loss function on a smaller part of the dataset, with nprec = 1000 samples.

0 20 40 60 80
Epoch

10−13

10−10

10−7

10−4

10−1

102

105
Su

bo
pt

im
al

ity

DANE (BGD)
BSGD
SAGA
SPAG

Figure 1: Logistic regression, n = 100, d = 47 236
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Conclusion

• Bregman SGD: tight convergence rate, adapted notion of variance,

• Bregman SAGA: full theory in the quadratic setting, asymptotical rate for

nonquadratic h.

Open question: understanding the transient regime, with additional regularity

assumptions (self-concordance ?)
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