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Motivation: quadratic inverse problems

min
x∈E

m∑
i=1

(
〈x,Hix〉 − bi

)2
where H1 . . . Hm are linear operators.

� Phase retrieval: for a1 . . . am ∈ Cn,

min
x∈Cn

m∑
i=1

(
|〈ai, x〉|22 − bi

)2
.

� Distance matrix completion:

min
X∈Rn×r

∑
(i,j)∈Ω

(
‖Xi −Xj‖2 − dij

)2
� Low-rank matrix sensing in factorized form

min
X∈Rn×r

m∑
i=1

(
〈Ai, XXT 〉 − bi

)2
(Burer-Monteiro factorization)
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Quartic problems: challenges

1. Non-convexity When can we find the global minimum?

Good initialization + local convergence

x∗

x0

Benign landscape: no spurious minima

x∗

x0

Guarantees under restrictive assumptions about problem and data.

[Chi et al. Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview. 2019]

2. Ill-conditioning

x 7→ x4

Curvature is unbounded:

no (local) strong convexity and no L-smoothness.

((((((((((((((hhhhhhhhhhhhhhσI � ∇2
f � LI

How to design efficient gradient methods for quartics?
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Outline

� Fast gradient methods for convex quartics

� Optimal preconditoning
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A simple convex quartic problem

min
x∈E

Q[x]4 − 〈c, x〉

Q : E4 → R is a 4-linear symmetric map.

Assumption: the function x 7→ Q[x]4 is convex.

Quartic conditioning:

α2‖x‖42 ≤ Q[x]4 ≤ β2‖x‖42, κ ,
β

α
.

We call κ the quartic condition number.

Example: for Q[x]4 =
∑n
i=1 x

4
i ,

1

n
‖x‖42 ≤ Q[x]4 ≤ ‖x‖42.
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Motivation : DC algorithm for quadratic inverse problems

m∑
i=1

(〈x,Hix〉 − bi)2 =

m∑
i=1

〈x,Hix〉2︸ ︷︷ ︸
ρ(x)

−
m∑
i=1

(
2bi〈x,Hix〉 − b2i

)
︸ ︷︷ ︸

φ(x)

In most examples, ρ and φ are convex! (not true in general)

Difference-of-convex optimization

min
x∈E

F (x) = ρ(x)− φ(x), with ρ, φ convex functions.

By convexity of φ,

F (x) ≤ ρ(x)− φ(x)− 〈∇φ(x), x− x〉

DC algorithm: xt+1 = argmin
x∈E

Q[x]4 − 〈∇φ(xt), x〉

Here, ρ is a quartic form: ρ(x) = Q[x]4 for some map Q.

Requires solving convex quartic subproblems!
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Gradient methods

Iterative methods:

xk+1 = argmin
x

f̃(x;xk)
f(x)

xk
xk+1

f̃(x;xk)

Quadratic approximation

f̃(x;xk) = f(xk) + 〈∇f(xk), x− xk〉+
1

2λ
‖x− xk‖2

→ gradient descent

xk+1 = xk − λ∇f(xk)
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Bregman gradient methods

Iterative methods:

xk+1 = argmin
x

f̃(x;xk)

f(x)
xk
xk+1

f̃(x;xk)

Bregman approximation:

f̃(x;xk) = f(xk) + 〈∇f(xk), x− xk〉+
1

λ
Dh(x, xk)

→ Bregman gradient

descent

(a.k.a mirror descent)

where
Dh(x, y) = h(x)− h(y)− 〈∇h(y), x− y〉

is the Bregman divergence induced by convex function h.

Application to quartic problems [Bolte et al., 2018, Dragomir et al. 2021]

The reference function

h(x) =
1

4
‖x‖42 +

1

2
‖x‖22

is well adapted for quartic problems.
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Which gradient method for convex quartics?

min
x∈E

Q[x]4 − 〈c, x〉.

α2‖x‖42 ≤ Q[x]4 ≤ β2‖x‖42, κ =
β

α

ρ is not L-smooth nor strongly convex.

� Gradient descent:

f(xk)− f∗ ≤ O
(
β2D4

k

)
(standard),

f(xk)− f∗ ≤ O
(
β2D4

k2

)
(accelerated).

Requires line search (geometry not adapted).

� Bregman gradient/mirror descent with quartic geometry:

f(xk)− f∗ ≤ O
(
β2D4

k

)
No line search needed, but no acceleration possible [Dragomir et al., 2021] .

We can do better using the polynomial structure.
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Homogenized gradient descent

min
x∈E

f(x) = Q[x]4 − 〈c, x〉,

can be equivalently solved as the homogenized problem

min
y∈E

√
Q[y]4 subject to 〈c, y〉 = 1. (Phom)

�

√
Q[·]4 is convex and L-smooth: apply projected gradient method to (Phom),

� ρ = Q[·]4 is uniformly convex of degree 4:

ρ(x)− ρ(y)− 〈∇ρ(y), x− y〉 ≥ α2

3
‖x− y‖4.

These properties allow to prove

f(xk)− f∗ ≤ O
(
f∗
κ2

k2

)
(standard projected gradient)

f(xk)− f∗ ≤ O
(
f∗
κ2

k4

)
(accelerated version)

10/17



Outline

� Fast gradient methods for convex quartics

� Optimal preconditoning
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Setup

Change of norm:

α
2‖x‖4

B ≤ Q[x]
4 ≤ β2‖x‖4

B, κB =
β

α

with ‖x‖2
B = 〈Bx, x〉, for B � 0.

How to choose a good preconditioner B?

Assume Q is of the form

Q[x]
4

=

m∑
i=1

〈ai, x〉4 = ‖Ax‖4
4, A =

aT1...
aTm

 ∈ Rm×d,

with m ≥ d.

Goal: find B ∈ Sd++ such that ‖x‖B ≈ ‖Ax‖4.

� “Uniform choice”: B(0) = ATA =
∑m

i=1 aia
T
i , κ

B(0) ∈ [
√
d,
√
m]

� “Optimal choice”: B∗ = ATDτ∗A =
∑m

i=1 τ
∗
i aia

T
i , κB∗ =

√
d

� John’s theorem: generic convex bodies κ = d
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Condition number for uniform choice B(0)

Row leverage scores of A = [a1, . . . am]
T ∈ Rm×d

`i(A) = 〈(ATA)−1ai, ai〉, i = 1 . . .m.

Coherence: γ(A) = max
i=1...m

`i(A)
d

m
≤ γ(A) ≤ 1

Low coherence
γ(A) ≈ d

m

High coherence
γ(A) ≈ 1

Condition number for uniform choice

With B(0) = ATA,
1

m
‖x‖4

B(0) ≤ ‖Ax‖44 ≤ γ(A)‖x‖4B(0)

κB(0) =
√
mγ(A) ∈ [

√
d,
√
m]
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Condition number for optimal choice B∗

We search for a better B of the form

B(τ) =

m∑
i=1

τiaia
T
i , τ ∈ Rm.

Lewis weights of order 2: there is a unique τ∗ satisfying

〈B(τ∗)−1ai, ai〉 = τ∗i , i = 1 . . .m. [Lewis 1978]

Can be computed with fixed-point iteration in O(md2) time.

Theorem: the operator B∗ = B(τ∗) satisfies 1

d
‖x‖4B∗ ≤ ‖Ax‖44 ≤ ‖x‖4B∗

κB∗ =
√
d

Recall that

κB(0) =
√
mγ(A) ∈ [

√
d,
√
m]

Great improvement of B∗ over B(0) for tall (m� d) and coherent (γ(A) ≈ 1) matrices.
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Numerical experiments

Toy problem with d = 50,m = 1000.

min
x∈Rd

m∑
i=1

〈ai, x〉4 − 〈c, x〉

Low coherence γ(A) ≈ 5 · 10−2

No improvement from B∗ over B(0)

High coherence γ(A) ≈ 0.8
B∗ improves performance
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Perspectives: non-convex quartics

min
x∈E

m∑
i=1

(
〈x,Hix〉 − bi

)2
Problem is non-convex: can we find the global minimum x∗?

Good initialization + local convergence

x∗

x0

Benign landscape: no spurious minima

x∗

x0

Typical assumption: “restricted isometry”-like property

(1− δ)‖x‖4 ≤
m∑
i=1

〈Hix, x〉2 ≤ (1 + δ)‖x‖4

Requires assumption on distribution of H1 . . . Hm

Ex: for phase retrieval, Hi = aia
T
i , and a1 . . . am are Gaussian i.i.d

What about non-uniform {Hi}? Analysis of quartic conditioning?
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Summary and perspectives

min
x∈E

Q[x]
4 − 〈c, x〉

α
2‖x‖4 ≤ Q[x]

4 ≤ β2‖x‖4
, κ =

β

α
.

Contributions

� Fast gradient methods using polynomial structure: O(κ2/k4) rate.

� Optimal preconditioner for Q[x]4 = ‖Ax‖4
4:

find B ∈ Sd++ such that ‖x‖B ≈ ‖Ax‖4.

Perspectives

� Extension to general convex quartics polynomials ?

min
x∈E

Q[x]
4

+ P [x]
3

+ 〈Ax, x〉+ 〈c, x〉.

� Practical preconditioning scheme based on randomization

� Lanscape analysis of quadratic inverse problems beyond random design

Thank you ! (paper on arXiv soon)
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Appendix
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Experiments

min
x∈Rn

m∑
i=1

〈ai, x〉4 − 〈c, x〉.

m = 2000, n = 1000, a1, . . . , am Gaussian i.i.d.
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