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Motivation: quadratic inverse problems

m

;Iélél - (<ZE, HZ£C> — bz)

2

where H; ... H,, are linear operators.

m Phase retrieval: fora;...a,, € C",

m
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m Distance matrix completion:

i ) (1K= X - dy)

(i,§)€Q

m Low-rank matrix sensing in factorized form
m X xt xXxT

min ((Ai, XXT) = b;)° [%[ }:{ }

XeRnXT’
1=1

(Burer-Monteiro factorization)
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Quartic problems: challenges

1. Non-convexity When can we find the global minimum?

Good initialization + local convergence Benign landscape: no spurious minima

X0
X0
ZC* ‘/'U*

Guarantees under restrictive assumptions about problem and data.

[Chi et al. Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview. 2019]

2. lll-conditioning

Curvature is unbounded:
no (local) strong convexity and no L-smoothness.

ol NVHF=LI

7 74 How to design efficient gradient methods for quartics?
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Outline

m Fast gradient methods for convex quartics

s Optimal preconditoning
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A simple convex quartic problem

;réig Q[z]* — (¢, x)

Q : E* — R is a 4-linear symmetric map.
Assumption: the function z — Q[z]* is convex.

Quartic conditioning:

o’ |zllz < Q[z]* < 57||=l2,

We call ¥ the quartic condition number.

Example: for Q[z]* = >_" | =7,

1
[z < Q[z]* < |l=l2.
n
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Motivation : DC algorithm for quadratic inverse problems

i x, H;x) ixH:c i% (z, H;x) — b7)

1=1 1=1

4 \ 4

p(2) ¢ ()
In most examples, p and ¢ are convex! (not true in general)

Difference-of-convex optimization

mig F(z) = p(x) — ¢(x), with p, ¢ convex functions.
Tre

By convexity of ¢,
F(z) < p(z) — ¢(T) = (VO(T), 2 — T)

DC algorithm: Li+1 = argenjazin Qlz]* = (Vo(zy), x)

Here, p is a quartic form: p(x) = Q[z]* for some map Q.

Requires solving convex quartic subproblems!
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Gradient methods

Iterative methods: ]z:

Th+1 = argmin f(flf, k)
T

_____

Ll+1

Quadratic approximation

1 — gradient descent

];(xaxk) — f(xk) + <Vf($k),$ — xk> + ﬁ“x - kaQ Thtl = Tk — )\Vf($k)
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Bregman gradient methods

Iterative methods:

Thi1 = argmin f(z; )
T

Lk+1

Bregman approximation:

) — Bregman gradient
fzyzy) = flag) + (Vf(zp), z — x) + XDh(g,;7 1) descent
(a.k.a mirror descent)

where Di(z,y) = h(z) — hy) — (VA(y),z — )

is the Bregman divergence induced by convex function h.

Application to quartic problems [Bolte et al., 2018, Dragomir et al. 2021]

The reference function ! !

h(z) = Zll=llz + Szl
4 2

is well adapted for quartic problems.
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Which gradient method for convex quartics?

min Q[z]* — (¢, ).

of||zllz < Qz]* < B¥|lzllz, =

O™

p is not L-smooth nor strongly convex.

m Gradient descent:
62D4
flag) = fu <O (T) (standard),

214
flan) - 1. <0 (55

Requires line search (geometry not adapted).

) (accelerated).

= Bregman gradient/mirror descent with quartic geometry:

f@w—ﬁgocéﬁ)

No line search needed, but no acceleration possible [Dragomir et al., 2021] .

We can do better using the polynomial structure.
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Homogenized gradient descent

min f(z) = Qlz]" - (¢, z),

can be equivalently solved as the homogenized problem

min /Q[y]* subject to {(c,y) = 1. (Plrren,)
yek

m /Q[]* is convex and L-smooth: apply projected gradient method to (Puom),

s p = Q[]* is uniformly convex of degree 4:

o
p(x) = p(y) = (Vp(y),z —y) = —llz — y"
These properties allow to prove

2
flze) — f« <O f*H— standard projected gradient
2

flxg) — [ <O (f* Zi) (accelerated version)
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Outline

m Fast gradient methods for convex quartics

s Optimal preconditoning
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Setup

Change of norm:

2 4 4 2 4
o||zllp < Qlz]” < B7llzllp, ke =

Q™

with ||z||% = (Bz, ), for B >~ 0.
How to choose a good preconditioner B?

Assume () is of the form

m aj
Qlal' = > (ai @) = Az, |A= | : | eR™,

i=1 al

with m > d.
Goal: find B € SiJr such that ||z||p =~ || Ax||4.

m “Uniform choice”: B = ATA = ST aial, K p(0) € [Vd, \/m]
m “Optimal choice”: B* = ATD A = > Tz.*a,-a?, kg = Vd
m John's theorem: generic convex bodies kK =d
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Condition number for uniform choice B

Row leverage scores of A = [a,...a,,]

0;(A) = (AT A) Y, a;), i=1...m.

Coherence: Y(A) =

max £;(A) 4 <~(A) <1
. m

Low coherence
v(A) = 5

"l

High coherence

v(A) ~ 1 “n

Condition number for uniform choice

With B(O) = AT A

1
—J2llp0) < 1423 < v(A)]2l 50

Ko = Vmy(A) € [\/gv Vm]
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Condition number for optimal choice B*

We search for a better B of the form
B(T) = Znaia?, T e R™.
i=1

Lewis weights of order 2: there is a unique 7* satisfying

(B(t") tas,a;) =7, i=1...m.| [Lewis 1978]

1

Can be computed with fixed-point iteration in @ (md?) time.

Theorem: the operator B* = B(7*) satisfies 2‘15’7”%* < |Az||* < ||z||%-

KUB*:\/a

Recall that

kpo) = vVmy(A) € [Vd, vm]

Great improvement of B* over B9 for tall (m > d) and coherent (y(A) ~ 1) matrices.
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Numerical experiments

Toy problem with d = 50, m = 1000.

™m
; 4
min i, L) — (C, T
rERA 4
1=1
3
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Low coherence y(A) ~ 51072 High coherence v(A) ~ 0.8
No improvement from B* over B(0) B* improves performance
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Perspectives: non-convex quartics

m

;Iélél - (<ZE, HZ£C> — bz>2

Problem is non-convex: can we find the global minimum x.?

Good initialization + local convergence Benign landscape: no spurious minima

X0

CC* ,/,E*
Typical assumption: “restricted isometry”-like property

(1= 0)l=l|* < Z<Hix,w>2 < 1+ 0)ll=*

Requires assumption on distribution of H, ... H,,

Ex: for phase retrieval, H; = az-a,;.r, and a1 . .. a,, are Gaussian i.i.d

What about non-uniform {H;}? Analysis of quartic conditioning?

16/17



Summary and perspectives

min Qlz]" — (¢, x)

olallt < Q) < Bllzllt, x = 2.
(87

Contributions

m Fast gradient methods using polynomial structure: O(x?/k") rate.

m Optimal preconditioner for Q[x]* = || Ax||}:

find B € S?_ such that ||z| s ~ || Az||4.

Perspectives

m Extension to general convex quartics polynomials ?

min Q[z]* + Plz]® + (Az, z) + (c, ).

rel

m Practical preconditioning scheme based on randomization

m Lanscape analysis of quadratic inverse problems beyond random design

Thank you ! (paper on arXiv soon)
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Appendix



Experiments

m

. 4
g 1<az-,:c> — (¢, 7).
1=

m = 2000,n = 1000, aq,...,a, Gaussian i.i.d.
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Experiments

m = 2000,n = 1000, a4, ..

min
rERN 4

(a;, x)* — (c, ).

1=1

., a,, Gaussian i.i.d.
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== Bregman gradient

=== Homogenized gradient

== Homogenized gradient + acceleration
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Experiments

. 4
g 1<ai,x> — (¢, 7).
1=

m = 2000,n = 1000, aq,...,a, Gaussian i.i.d.
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